5TH GRADE MATH CURRICULUM MAP 1ST QUARTER- 45 DAYS

Days	Standard	practices	explanation	resources
	5.OA.A.1. Use parentheses,	5.MP.1. Make sense of	This standard builds on the expectations of third grade	envisions 8.2
	brackets, or braces in numerical	problems and persevere in	where students are expected to start learning	galileo
	expressions, and evaluate	solving them.	the conventional order. Students need experiences	Pemdas video
	expressions with these symbols	5.MP.5, Use appropriate tools	with multiple expressions that use grouping	teacher
		strategically.	symbols throughout the year to develop understanding	determined
		5.MP.8. Look for and express	of when and how to use parentheses, brackets,	
		regularity in repeated	and braces. First, students use these symbols with	
		reasoning	whole numbers. Then the symbols can be used as	
			students add, subtract, multiply and divide decimals	
5 days			and fractions.	
			Examples:	
			🛿 (26 + 18) 4 Answer: 11	
			☑ {[2 x (3+5)] – 9} + [5 x (23-18)] Answer: 32	
			☑ 12 – (0.4 x 2) Answer: 11.2	
			☑ (2 + 3) x (1.5 – 0.5) Answer: 5	
			211	
			6	
			2 3	
			2 2	

3 days	 5.OA.A.2. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 ② (8 + 7). Recognize that 3 ③ (18932 +921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product. 	 5.MP.1. Make sense of problems and persevere in solving them. 5.MP.2. Reason abstractly and quantitatively. 5.MP.7. Look for and make use of structure. 5.MP.8. Look for and express regularity in repeated reasoning. 	 Students use their understanding of operations and grouping symbols to write expressions and interpret the meaning of a numerical expression. Examples: I Students write an expression for calculations given in words such as "divide 144 by 12, and then subtract 7/8." They write (144 ÷ 12) – 7/8. I Students recognize that 0.5 x (300 ÷ 15) is ½ of (300 ÷ 15) without calculating the quotient. 	envision topic 8 engage ny 3-12 other teacher resources
4 days	5.NBT.A.1. Recognize that in a multi- digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.	5.MP.2. Reason abstractly and quantitatively. 5.MP.6. Attend to precision. 5.MP.7. Look for and make use of structure.	A student thinks, "I know that in the number 5555, the 5 in the tens place (5555) represents 50 and the 5 in the hundreds place (5555) represents 500. So a 5 in the hundreds place is ten times as much as a 5 in the tens place or a 5 in the tens place is 1/10 of the value of a 5 in the hundreds place."	Envision topic 1 engage ny 1-4 galileo

	5.NBT.A.2. Explain patterns in	5.MP.2. Reason abstractly and	Students might write:	Engage Ny 1-4
	the number of zeros of the	quantitatively.	36 x 10 = 36 x 101 = 360	Envisions topic
	product when multiplying a	5.MP.6. Attend to precision.	36 x 10 x 10 = 36 x 102 = 3600	3,6,7
	number by powers of 10, and	5.MP.7. Look for and make use	36 x 10 x 10 x 10 = 36 x 103 = 36,000	galileo
	explain patterns in the	of structure	36 x 10 x 10 x 10 x 10 = 36 x 104 = 360,000 Students	
	placement of the decimal point		should be able to use the same type of reasoning as	
	when a decimal is multiplied or		above to explain why the	
	divided by a power of 10. Use		following multiplication and division problem by	
4 days	whole-number exponents to		powers of 10 make sense.	
	denote powers of 10.		523 10 523,000 3 🛛 🖓 The place value of 523 is	
			increased by 3 places.	
			5.223 10 522.3 2 🛛 🖓 The place value of 5.223 is	
			increased by 2 places.	
			52.3 10 5.23 1 🛛 🖓 The place value of 52.3 is decreased	
			by one plac	

	5.NBT.A.3. Read, write, and compare	5.MP.2. Reason abstractly and	Some equivalent forms of 0.72 are:	
	decimals to thousandths.	quantitatively.	72/100	
	a. Read and write decimals to	5.MP.4. Model with mathematics.	7/10 + 2/100	
	thousandths using base-ten	5.MP.5. Use appropriate tools	7 x (1/10) + 2 x (1/100)	
	numerals, number names, and	strategically.	0.70 + 0.02	
	expanded form, e.g., 347.392 = 3 🛛	5.MP.6. Attend to precision.	70/100 + 2/100	
	100 + 4 ? 10 + 7 ? 1 + 3 ? (1/10) + 9 ?	5.MP.7. Look for and make use of	0.720	
	(1/100) + 2 🛛 (1/1000).	structure.	7 x (1/10) + 2 x (1/100) + 0 x (1/1000)	
	b. Compare two decimals to		720/1000	
	thousandths based on meanings of		Students need to understand the size of decimal	
	the digits in each place, using >, =,		numbers and relate them to common benchmarks	
	and < symbols to record the results		such as 0, 0.5 (0.50 and 0.500), and 1. Comparing	
6 days	of comparisons.		tenths to tenths, hundredths to hundredths, and	
			thousandths to thousandths is simplified if students	
			use their understanding of fractions to compare	
			decimals.	
			Examples:	
			Comparing 0.25 and 0.17, a student might think, "25	
			hundredths is more than 17 hundredths." They may	
			also think that it is 8 hundredths more. They may write	
			this comparison as 0.25 > 0.17 and recognize that 0.17	
			< 0.25 is another way to express this comparison.	
			Comparing 0.207 to 0.26, a student might think,	
			"Both numbers have 2 tenths, so I need to compare	
			the hundredths. The second number has 6 hundredths	

	5.NBT.A.4. Use place value	5.MP.2. Reason abstractly and	When rounding a decimal to a given place, students	Engage NY 7/8
	understanding to round decimals to	quantitatively.	may identify the two possible answers, and use their	envisions topic 1
	any place	5.MP.6. Attend to precision.	understanding of place value to compare the given	galileo
		5.MP.7. Look for and make use of	number to the possible answers.	
		structure	Example:	
6 days			Round 14.235 to the nearest tenth.	
0 uays			Students recognize that the possible answer must be in	
			tenths thus, it is either 14.2 or 14.3. They then identify	
			that 14.235 is closer to 14.2 (14.20) than to 14.3	
			(14.30).	
	5.NBT.B.5. Fluently multiply multi-	5.MP.2. Reason abstractly and		Engage ny 3-9 13-
	digit whole numbers using the	quantitatively.	In prior grades, students used various strategies to	15
	standard algorithm	5.MP.6. Attend to precision.	multiply Students can continue to use these different	envisions topic 3
		5.MP.7. LOOK for and make use of	strategies as long as they are efficient, but must also	
		E MD 8 Look for and oveross	understand and be able to use the standard algorithm	
		5. MP.o. LOOK for and express	In applying the standard algorithm students recognize	
6 days			the importance of place value.	
			Example:	
			☑ 123 x 34. When students apply the standard	
			algorithm, they, decompose 34 into 30 + 4. Then they	
			multiply 123 by 4, the value of the number in the ones	
			place, and then multiply 123 by 30, the value of the 3	

	5.NBT.B.7. Add, subtract, multiply,	5.MP.2. Reason abstractly and	Students should be able to express that when they add	Engage Ny 9-16
	and divide decimals to hundredths,	quantitatively.	decimals they add tenths to tenths and hundredths to	envisions 1,2,4,6,7
	using concrete models or drawings	5.MP.3. Construct viable	hundredths. So, when they are adding in a vertical	
	and strategies based on place value,	arguments and critique the	format (numbers beneath each other), it is important	
	properties of operations, and/or the	reasoning of others.	that they write numbers with the same place value	
	relationship between addition and	5.MP.4. Model with mathematics.	beneath each other. This understanding can be	
	subtraction; relate the strategy to a	5.MP.5. Use appropriate tools	reinforced by connecting addition of decimals to their	
	written method and explain the	strategically.	understanding of addition of fractions. Adding fractions	
	reasoning used	5.MP.7. Look for and make use of	with denominators of 10 and 100 is a standard in	
		structure.	fourth grade.	
			Example:	
			☑ 4 - 0.3	
7 days			3 tenths subtracted from 4 wholes. The wholes must	
,.			be divided into tenths.	
			The answer is 3 and 7/10 or 3.7.	
			Example: An area model can be useful for illustrating	
			products.	
			Students should be able to describe the partial	
			products displayed by the area model. For example,	
			"3/10 times 4/10 is 12/100.	
			3/10 times 2 is 6/10 or 60/100.	
			1 group of 4/10 is 4/10 or 40/100.	
			1 group of 2 is 2."	
			Example: Finding the number in each group or share	
			Istudents should be encouraged to apply a fair	

	5.MD.A.1. Convert among different-	5.MP.1. Make sense of problems	In fifth grade, students build on their prior knowledge	engage ny 13-15
	sized standard measurement units	and persevere in solving them.	of related measurement units to determine equivalent	envisions topic 13
	within a given measurement system	5.MP.2. Reason abstractly and	measurements. Prior to making actual conversions,	galileo
	(e.g., convert 5 cm to 0.05 m), and	quantitatively.	they examine the units to be converted, determine if	
	use these conversions in solving multi-	5.MP.5. Use appropriate tools	the converted amount will be more or less units than	
4 days	step, real world problems.	strategically.	the original unit, and explain their reasoning. They use	
		5.MP.6. Attend to precision	several strategies to convert measurements. When	
			converting metric measurement, students apply their	
			understanding of place value and decimals.	