5TH GRADE MATH CURRICULUM MAP 3rd QUARTER- 40 DAYS

Days	Standard	practices	explanation	resources
	5.NF.B.5. Interpret multiplication as	5.MP.2. Reason abstractly and	3/4 ×7 is less than 7 because 7 is multiplied by a	Engage NY 21-24
	scaling (resizing), by:	quantitatively.	factor less than 1 so the product must be less than 7.	envisions topic
	a. Comparing the size of a product to	5.MP.4. Model with mathematics.		11 galileo
	the size of one factor on the basis of	5.MP.6. Attend to precision.	2 2/3 x 8 must be more than 8 because 2 groups of 8 is	
	the size of the other factor, without	5.MP.7. Look for and make use of	16 and 2 2/3 is almost 3 groups of 8. So the answer	
	performing the indicated	structure.	must be close to, but less than 24.	
	multiplication.		3 5 X 3 because multiplying 3 by 5 is the same as	
	b. Explaining why multiplying a given		multiplying by 1.	
	number by a fraction greater than 1		4 5 X 4 4 5	
	results in a product greater than the			
8 days	given number (recognizing			
	multiplication by whole numbers			
	greater than 1 as a familiar case);			
	explaining why multiplying a given			
	number by a fraction less than 1			
	results in a product smaller than the			
	given number; and relating the			
	principle of fraction equivalence a/b			
	= (n´a)/(n´b) to the effect of			
	multiplying a/b by 1.			

	5.NF.B.7. Apply and extend previous	5.MP.1. Make sense of problems	In fifth grade, students experience division problems	Engage Ny 25-31
	understandings of division to divide	and persevere in solving them.	with whole number divisors and unit fraction dividends	envisions topic 11
	unit fractions by whole numbers and	5.MP.2. Reason abstractly and	(fractions with a numerator of 1) or with unit fraction	galileo
	whole numbers by unit fractions.	quantitatively.	divisors and whole number dividends. Students extend	
	(Students able to multiply fractions in	5.MP.3. Construct viable	their understanding of the meaning of fractions, how	
	general can develop strategies to	arguments and critique the	many unit fractions are in a whole, and their	
	divide fractions in general, by	reasoning of others.	understanding of multiplication and division as	
	reasoning about the relationship	5.MP.4. Model with mathematics.	involving equal groups or shares and the number of	
	between multiplication and division,	5.MP.5. Use appropriate tools	objects in each group/share. In sixth grade, they will	
	but division of a fraction by a fraction	strategically.	use this foundational understanding to divide into and	
	is not a requirement at this grade.)	5.MP.6. Attend to precision.	by more complex fractions and develop abstract	
	a. Interpret division of a unit fraction	5.MP.7. Look for and make use of	methods of dividing by fractions.	
days	by a non-zero whole number, and	structure.	Example: Knowing the number of groups/shares and	
	compute such quotients. For	5.MP.8. Look for and express	finding how many/much in each group/share	
	example, create a story context for	regularity in repeated reasoning.	 Four students sitting at a table were given 1/3 of a 	
	(1/3) ÷ 4, and use a visual fraction		pan of brownies to share. How much of a pan will each	
	model to show the quotient. Use the		student get if they share the pan of brownies equally?	
	relationship between multiplication		The diagram shows the 1/3 pan divided into 4 equal	
	and division to explain that $(1/3) \div 4$		shares with each share equaling 1/12 of the pan.	
	= 1/12 because (1/12) ´ 4 = 1/3.			

	5.MD.C.3. Recognize volume as an	5.MP.2. Reason abstractly and	Students' prior experiences with volume were	ngage NY 1-9
	-	quantitatively.	restricted to liquid volume. As students develop their	envisions topic 12
	understand concepts of volume	5.MP.4. Model with mathematics.	understanding volume they understand that a 1-unit	galileo
	measurement.	5.MP.5. Use appropriate tools	by 1-unit by 1-unit cube is the standard unit for	
	a. A cube with side length 1 unit,	strategically.	measuring volume. This cube has a length of 1 unit, a	
	called a "unit cube," is said to have	5.MP.6. Attend to precision.	width of 1 unit and a height of 1 unit and is called a	
	"one cubic unit" of volume, and can	5.MP.7. Look for and make use of	cubic unit. This cubic unit is written with an exponent	
	be used to measure volume.	structure.	of 3 (e.g., in3, m3). Students connect this notation to	
	b. A solid figure which can be packed		their understanding of powers of 10 in our place value	
	without gaps or overlaps using n unit		system. Models of cubic inches, centimeters, cubic	
	cubes is said to have a volume of n		feet, etc., are helpful in developing an image of a cubic	
	cubic units.		unit. Student's estimate how many cubic yards would	
9 days			be needed to fill the classroom or how many cubic	
			centimeters would be needed to fill a pencil box	

	5.MD.C.4. Measure volumes by	5.MP.2. Reason abstractly and	Students understand that same sized cubic units are	ngage NY 1-9
	counting unit cubes, using cubic cm,	quantitatively.	used to measure volume. They select appropriate units	
	cubic in, cubic ft, and improvised	5.MP.4. Model with mathematics.	to measure volume. For example, they make a	galileo
	units	5.MP.5. Use appropriate tools	distinction between which units are more appropriate	
		strategically.	for measuring the volume of a gym and the volume of	
		5.MP.6. Attend to precision.	a box of books. They can also improvise a cubic unit	
			using any unit as a length (e.g., the length of their	
			pencil). Students can apply these ideas by filling	
			containers with cubic units (wooden cubes) to find the	
			volume. They may also use drawings or interactive	
			computer software to simulate the same filling	
			process.	
days			Technology Connections:	
,			http://illuminations.nctm.org/ActivityDetail.aspx?ID=6	

	5.MD.C.5. Relate volume to the	5.MP.1. Make sense of problems	Students need multiple opportunities to measure	Engage Ny 4-9
	operations of multiplication and	and persevere in solving them.	volume by filling rectangular prisms with cubes and	envisions Topic 12
	addition and solve real world and	5.MP.2. Reason abstractly and	looking at the relationship between the total volume	galileo
	mathematical problems involving	quantitatively.	and the area of the base. They derive the volume	
	volume.	5.MP.3. Construct viable	formula (volume equals the area of the base times the	
	a. Find the volume of a right	arguments and critique the	height) and explore how this idea would apply to other	
	rectangular prism with whole-	reasoning of others.	prisms. Students use the associative property of	
	number side lengths by packing it	5.MP.4. Model with mathematics.	multiplication and decomposition of numbers using	
	with unit cubes, and show that the	5.MP.5. Use appropriate tools	factors to investigate rectangular prisms with a given	
	volume is the same as would be	strategically.	number of cubic units.	
	found by multiplying the edge	5.MP.6. Attend to precision.	Examples:	
	lengths, equivalently by multiplying	5.MP.7. Look for and make use of	 When given 24 cubes, students make as many 	
2 days	the height by the area of the base.	structure.	rectangular prisms as possible with a volume of 24	
	Represent threefold whole-number	5.MP.8. Look for and express	cubic units. Students build the prisms and record	
	products as volumes, e.g., to	regularity in repeated reasoning	possible dimensions.	
	represent the associative property of		Length Width Height	
	multiplication.		1 2 12	
	b. Apply the formulas V = I ´ w ´ h and		2 2 6	
	V = b´h for rectangular prisms to		4 2 3	
	find volumes of right rectangular		831	
	prisms with whole-number edge		• Students determine the volume of concrete needed	
	lengths in the context of solving real		to build the steps in the diagram below.	
	world and mathematical problems.			
	c. Recognize volume as additive. Find		• A homeowner is building a swimming pool and needs	
	volumes of solid figures composed of		to calculate the volume of water needed to fill the	